



## The Card Game Zero sumZ and its Mathematical Cousins

Jonathan Lenchner, IBM Research Africa

10 August 2018



© 2018 IBM Corporation



#### Zero sumZ was created with...

- Alejandro Erickson, University of Victoria, and
- Mathieu Guay-Paquet, University of Waterloo



Alejandro

2



Mathieu



### Outline

- Rules of the Game
- A Couple of Practice Hands
- Connection to the Card Game Set
- Interesting Facts (Theorems?) about Set
- Interesting Facts about Zero sumZ / Open Problems
- \$\$ Game \$\$
- A "Grandmaster" Strategy in Zero sumZ
- Other Game Variations



#### **Rules of the Game**

- The game is played by two or more players (though also possible to play solitaire).
- Seven cards are dealt and the first person to find a "zero set" gets to keep the cards comprising the set.
- New cards are dealt to fill in for the cards just removed, and another round is played.
- Play continues until all cards are dispensed. The player with the most cards at the end wins.







#### Learning the Rules - A Simple Hand



| _ | _ |   |     |   |
|---|---|---|-----|---|
|   |   | _ |     | - |
|   | _ | - |     | - |
|   |   |   |     |   |
| - |   | _ |     |   |
|   |   |   | - V |   |

## **A Simple Hand**



| _ | - |   | _ | _ |
|---|---|---|---|---|
|   | _ | _ |   | _ |
|   | _ | - | _ | - |
|   | - | - |   |   |
| _ | _ | _ | _ | _ |
| _ | _ |   |   | _ |

## A Harder One...

7



| _ |  |
|---|--|
|   |  |

#### A Harder One...





#### Why must there always be a Zero Set?

#### Proof #1 (Linear Algebra):

- Cards are elements of the vector space  $Z_2^{\circ}$
- 7 vectors from this space => must have a linearly dependent set
- Some non-trivial linear combination of the 7 vectors sum to the zero vector
- Scalars in this field are just {0, 1}, so the desired linear combination is just a set of cards



### Why must there always be a Zero Set?

- Proof #2 (For smart kids who have never seen linear algebra):
  - Denote the card that a collection of cards, S, sums to by  $\Sigma(S)$
  - There are 2<sup>7</sup> 1 different non-empty subsets of the 7 dealt cards
  - Each subset sums to a card in  $\mathbb{Z}_2^6$ , of which there are  $2^6$  possibilities.
  - Must be two non-empty subsets,  $S_1$  and  $S_2$ , of cards with the same sum, i.e.  $\Sigma(S_1) = \Sigma(S_2)$ .
  - If  $S_1$  and  $S_2$  are disjoint, their sum is a zero set.
  - If S<sub>1</sub> and S<sub>2</sub> are not disjoint, then they have a non-empty intersection K. Write  $S_1 = K \cup (S_1 \setminus K)$ ,

$$S_2 = K \cup (S_2 \setminus K)$$



#### Why must there always be a Zero Set?

#### Proof #2

- Case S<sub>1</sub> and S<sub>2</sub> not disjoint:  $S_1 = K \cup (S_1 \setminus K)$ ,

$$S_2 = K \cup (S_2 \setminus K)$$

- Since  $\Sigma(S_1) = \Sigma(S_2)$ ,  $\Sigma(S_1) \Sigma(K) = \Sigma(S_2) \Sigma(K)$  so that:  $\Sigma(S_1 \setminus K) = \Sigma(S_2 \setminus K)$
- Thus the disjoint union of  $S_1 \setminus K$  and  $S_2 \setminus K$  forms a zero set.

#### QED



#### Easier to understand this proof with actual cards.... (Disjoint case)





#### Easier to understand this proof with actual cards.... (Non-disjoint case)





#### Easier to understand this proof with actual cards.... (Non-disjoint case)





#### Easier to understand this proof with actual cards.... (Non-disjoint case)





### **The Card Game Set**

 Invented by population geneticist Marcia Falco while working at Cambridge in 1974



- 12 cards initially dealt.
- Each card has 4 attributes:
  - color, number of objects, shape and texture
- A "set" is a collection of cards, such that for each attribute, either all cards are the same or all cards are different



#### **The Card Game Set**



- 12 cards initially dealt.
- Each card has 4 attributes:
  - color, number of objects, shape and texture
- A "set" is a collection of cards, such that for each attribute, either all cards are the same or all cards are different



#### **The Card Game Set**



- 12 cards initially dealt.
- Each card has 4 attributes:
  - color, number of objects, shape and texture
- A "set" is a collection of cards, such that for each attribute, either all cards are the same or all cards are different



#### Why is Set like Zero sumZ?

- Set is actually a card game over  $Z_3^4$
- "Slots" are each of the four attributes {color, number of objects, shape, texture}
- Key observation:
  - The only way for three numbers in {0, 1, 2} to sum to 0 (mod 3) is if all three numbers are the same or all are different!
- So Set is just Zero sumZ over a different vector space, where the set size must be exactly 3!



#### **Mathematics of Set**

- In Set, there is not necessarily a "set" in every collection of 12 cards
- If all players agree there is no "set" more cards are dealt until some player finds a set
- As many as 20 cards can be found with no set
  - For a construction of such a collection of cards see the Set website
- Davis and Maclagan showed via a mathematical argument that every collection of 21 cards must contain a set
- Maximal collection of cards not containing a set also known, via exhaustive search in the 5D version of Set (i.e. over  $Z_3^5$ ): 45.
- These sets are known as "maximal affine caps." Size of the maximal cap in 6D is known to lie in 112 ≤ c<sub>max</sub> ≤ 114.
- In 7D no "respectable" bounds are known



#### **Mathematics of Set**

- Odds against there being no set in a collection of 12 cards has also been studied:
  - Peter Norvig (http://norvig.com/SET.html) showed that the odds of such an occurrence are approximately 16:1
  - Henrik Warne (http://henrikwarne.com/2011/09/30/setprobabilities-revisited/) showed that the probability of there being no set is not uniform as you play through a deck, ranging from 30:1 in the first round and then quickly leveling off to between 13:1 and 14:1.

Back to Zero sumZ



22



#### **Returning to our first example hand....**





#### Not the largest possible sum-zero set....





#### Not the largest possible sum-zero set....





## How many zero sum sets can there be?

- Plainly there cannot be exactly 2
- If there are 2 must be at least 3
- With a little work one can show that the number of zero sum sets must be one of {1, 3, 7 or 15} – a consequence of the Nullity + Rank Theorem of Linear Algebra!
- Having more than one zero sum set is fairly common. What is the average number of such sets?
- What is the expected maximum set size?



## What do all the cards taken together sum to?

 <u>Corollary</u>: The last deal of 7 or fewer cards must always form a zero set (so not necessary to play this hand – can serve as a checksum)



What is the most likely sum of 3 random cards from the Zero sumZ deck?

What is the least likely sum of 4 random cards from the Zero sumZ deck?

However – does not continue this way forever since the sum of the first 61 cards or first 62 cards is never 0.

When does the alternating property break down?



## For the \$\$\$

#### Some randomly dealt hands for audience to try....



## A "Grandmaster" Strategy

Quickly sum up the value of all cards and work backwards!



## Example:





## **Other Variations**

- Can imagine playing the same game over  $Z_3^4$ . Instead of using the Set attributes, use four disks of different colors that are either empty, 1/3 full, or 2/3 full, and do addition modulo 1.
- Because of the different scalar field, there is a difference between addition and subtraction in this case, though a + 2b = a – b so addition and subtraction are the only operations you need to consider.
- How many cards at a minimum are required to guarantee a sum-zero set? Of course 5 - by the linear algebra proof! We do not know how to create a variant of the combinatorial proof.
- How about over other vector spaces?
- Computational complexity of finding linearly dependent sets in finite vector spaces is known to be NP-complete by reduction to 3-SAT – in fact more can be said [see Bhattacharyya et al., 2011]



# Visit <u>http://zerosumz.com</u> to play online or pick up a deck for yourself!

